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A variational approach of nonlinear dissipative pulse propagation
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Abstract. A variational technique to deal with nonlinear dissipative pulse propagation is established. By
means of a generalization of the Kantorovitch method, suitable for non-conservative systems, we are able
to cope with an extended nonlinear Schrödinger equation (NLSE) which describes pulse propagation under
the influence of nonlinear loss and/or gain, in particular, in the presence of two-photon absorption (TPA).
Based on the characteristics of the exact solution of the NLSE in the absence of TPA, we investigate
the effects of frequency dispersion of the nonlinear susceptibility associated to the two-photon resonance,
obtaining the necessary conditions for a solitary wave solution, even in the presence of a self-steepening
term.

PACS. 42.65.-k Nonlinear optics – 03.40.Kf Waves and wave propagation: general mathematical aspects –
52.35.Mw Nonlinear waves and nonlinear wave propagation (including parametric effects, mode coupling,
ponderomotive effects, etc.)

Variational approaches have gained a new thrust in re-
cent years in many branches of science, including quite
distinct fields such as correlations in charged polymers [1],
sandpile dynamics [2] and excitations of a Bose-Einstein
condensate [3]. The variational analysis provides us with
a formalism capable to establish fundamental equations
that describe qualitatively and quantitatively the dynam-
ical behavior of a specific system. On the other hand, with
the laser’s advent, nonlinear optics has become a partic-
ularly interesting field for its theoretical context as well
as its practical consequences to technology, in particular,
to nonlinear optical fiber and waveguide systems. Here
too, the variational method has been widely applied to
obtain approximated solutions for problems concerning
pulse and/or beam propagation within the framework of
the nonlinear Schrödinger equation (NLSE) which applies
to problems involving one or more transverse dimensions
besides the propagation dimension.

However the application of the variational method to
non-conservative optical systems has been very limited
[4–6], because it has been assumed that non-conservative
aspects of pulse and/or beam propagation either could
not be treated or it was very complicated using this type
of analysis. Nevertheless it would be quite important to
have a valid mathematical framework that could provide
approximated solutions for problems in propagation that
involve nonlinear loss and/or gain processes. The need for
alternative solutions lies on the fact that rigorous ones can
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usually be found only for oversimplified models of physical
situations.

An example of such an actual problem is nonlinear
propagation in the vicinity of a two-photon absorption. It
is well known that third order nonlinearities may be en-
hanced near such a resonance [7,8]. In particular, lately
there has been considerable interest in the two-photon res-
onant enhanced nonlinearity near the half band gap of
semiconductors [9] for all-optical switching applications,
where TPA can be a limiting factor [10,11]. Pulse propa-
gation studies in this situation [12,13] indicate asymmetric
frequency spectra and self-steepening of the transmitted
pulse as a consequence of frequency dispersion of the non-
linear refractive index n2(ω) and also of the TPA coeffi-
cient κ(ω). Therefore, to describe properly pulse propa-
gation in the vicinity of a TPA , one has to deal with an
extended NLSE that includes terms that are originated
from the frequency dispersion of the nonlinear suscepti-
bility in addition to the nonlinear absorption. There is no
known exact solution for such equation so that variational
solutions would be quite useful here.

In this paper we firstly establish a mathematical frame-
work based on variational principles to find approximated
solutions for an extended nonlinear Schrödinger equa-
tion that includes nonlinear non-conservative processes
which might occur during propagation. To this end, we set
up suitable Euler-Lagrange equations and solve them by
means of the Kantorovitch ansatz for a Lagrangian func-
tion with two independent variables.

After that, to demonstrate the power of our method,
we apply it to study the behavior of pulses propagating
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near a two-photon resonance. First by using the exact so-
lution in the absence of TPA to find analytical expressions
for the dynamics of the soliton’s parameters. Next we in-
clude a self-steepening term, which takes into account the
frequency dispersion of the nonlinear susceptibility and
find a suggestive picture of the interplay among the vari-
ous effects. In particular we show that under certain par-
ticular conditions it is still possible to find solitary wave
solutions.

Let us begin by writing the total Lagrangian of the
system as the sum of two terms, a conservative one LC

and a non-conservative one, LNC:

L(u, u∗, ξ, τ, uξ, uτ , u
∗
ξ , u
∗
τ) = LC + LNC , (1)

where u(ξ, τ) represents the amplitude envelope of the op-
tical field, which is a slowly varying function of the time
τ and propagation distance ξ. The fundamental problem
here is to find out the extreme functions u(ξ, τ) that ren-
ders the Langrangian integral stationary. This may be ex-
pressed as a Hamilton’s principle [14],

δ

[∫ ∫
Ldξdτ

]
= δ

[∫ ∫
(LC + LNC)dξdτ

]
= 0 , (2)

so the Euler-Lagrange equations describing the dynamics
of the system are given by,

δL

δui
=

∂

∂ξ

∂LC

∂(∂ui
∂ξ

)
+

∂

∂τ

∂LC

∂(∂ui
∂τ

)
−
∂LC

∂ui
= Qi . (3)

Here, the index i runs through 1 − 2 with u1 = u
and u2 = u∗. The function Qi takes into account all
non-conservative processes described by the corresponding
terms of the total Lagrangian and is given by,

Qi =
∂LNC

∂ui
−

∂

∂ξ

∂LNC

∂(∂ui
∂ξ

)
−

∂

∂τ

∂LNC

∂ ∂ui
∂τ

· (4)

To find approximated solutions for the Euler-Lagrange
equations for non-conservative systems, we can use a
generalization of the Rayleigh-Ritz method known as
Kantorovitch method. The method assumes that the ex-
tremum of the variational integral of the Lagrangian func-
tion may be expressed as,

u(ξ, τ) = f(b1(ξ), b2(ξ), ..., bN (ξ), τ) , (5)

where f is a guessed function based on a previous knowl-
edge of the system’s behavior and b’s are N unknown
parameter functions to be determined. The substitution
of the constants parameters of the Rayleigh-Ritz method
by functions is the base of Kantorovitch method. Thus
the Lagrangian depend on the independent variables ξ
and τ and also on the dependent variables u(ξ, τ) and
u∗(ξ, τ), which in turn depends on the dependent vari-
ables bj through the known function f . Just as before, our
problem is to find the extreme of the variational integral,

I =

∫ ∫
L(ξ, τ, f(b1(ξ), b2(ξ), ..., bN (ξ), τ), (6)

f∗(b1(ξ), b2(ξ), ..., bN (ξ), τ), uξ, uτ , u
∗
ξ , u
∗
τ )dξdτ.

Since the dependence of the integrand with respect to the
variable τ is known, the integration in τ may be per-
formed. However, for the moment we leave it explicitly
and note that the only independent functions are bj . Per-
forming the variation supposing that the only independent
variable is ξ and using the implicit function theorem we
find,

n∑
i=1

∫ ∫ (
d

dξ

∂LC

∂fξ
−
∂LC

∂f
+Qu(f)

)
∂f

∂bi
δbidξdτ = 0 .

(7)

Now, we may restate the variational problem , in terms of
the variable ξ and of the parameter functions b’s, as,

n∑
i=1

∫ ∫ (
d

dξ

∂LKC

∂(bi)ξ
−
∂LKC

∂bi
+QK

)
δbidξdτ = 0 (8)

where the subindex K is used to make the distinction of
the fuctional form before and after substitution of b’s.

Identifying terms, conservative and non-conservative,
between the last two equations and defining < LKC >=∫
LKCdτ we finally obtain the Euler-Lagrange equations

for the functions bj,

d

dξ

∂ < LKC >

∂(bi)ξ
−
∂ < LKC >

∂bi
=

∫
QK

∂u

∂bi
dτ . (9)

The set of equations (9) need to be solved to get an ap-
proximated solution of the extremum that minimizes the
integral given by equation (2). In the case that the La-
grangian function describes a conservative physical sys-
tem, the right hand side of equation (9) is identically zero,
yielding to the Euler-Lagrange equations for conservative
systems.

Now to illustrate and check the effectiveness of the for-
malism developed, let us consider the following dissipative
NLSE describing the propagation in the presence of TPA,

i
∂u

∂ξ
+

1

2

∂2u

∂τ2
+ |u|2u = −iκ|u|2u , (10)

where κ represents the TPA coefficient, that is κ ∝ Imχ3,
u, ξ and τ are normalized variables representing electric
field amplitude, longitudinal coordinate and orthogonal
coordinate (space or time). For the sake of simplicity we
are using just 1 + 1 dimensions. The Lagrangian corre-
sponding to the conservative problem (κ = 0) is given by:

LC =
i

2

(
u
∂u∗

∂ξ
− u∗

∂u

∂ξ

)
+

1

2

∣∣∣∣∂u∂τ
∣∣∣∣2 − 1

2
|u4| . (11)

Here, the non-conservative process is described by:

Q = −iκ|u|2u. (12)

The Lagrangian and the non-conservative functions have
u and its complex conjugate as dependent variables. No-
tice that although u and u∗ are related through the com-
plex conjugation operator, they are linearly independent.
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Furthermore, the Euler-Lagrange equations for these vari-
ables are related through:

δL

δu∗
=

(
δL

δu

)∗
= QK . (13)

For this kind of situation, the Kantorovitch method as
given in equation (9) can be modified to read,

d

dξ

∂ < LKC >

∂(bi)ξ
−
∂ < LKC >

∂bi
= 2Re

∫
QK

∂u∗

∂bi
dτ . (14)

Next, an ansatz is proposed for u(ξ, τ) based on the fea-
tures of the solution in the absence of non-conservative
processes. When the TPA term is null, the NLSE has an
exact solution with the following functional form:

u(ξ, τ) = A(ξ)sech

(
τ

ω(ξ)

)
exp(iφ(ξ)) . (15)

Therefore, we propose a solution of this form and expect
it to evolve adiabatically when perturbed by a TPA pro-
cess.Here it should be noted that this ansatz yields only to
adiabatic soliton solutions, excluding any dynamical oscil-
lations. After inserting equation (15) into the Lagrangian
function, integrating with respect to τ performing all the
variations with respect to the function parameters A, ω
and φ and applying equation (14) we find that the dy-
namic equations are,

2
∂φ

∂ξ
−

1

3ω2
−

2

3
A2 = 0 , (16)

2
∂φ

∂ξ
+

1

3ω2
−

4

3
A2 = 0 , (17)

∂

∂ξ
(2ωA2) = −

8

3
κωA4 . (18)

It should be noted here that this last equation expresses
the fact that the pulse power dissipation is proportional to
A4, corresponding to the absorption of two photons. This
set of equations is easily solved to determine the evolution
of the soliton’s parameters and produce exactly the same
solution obtained in reference [15] via a different route.
Having shown the effectiveness of the present scheme, we
now turn to a practical problem with no known exact so-
lution.

There has been evidences that pulse propagation near
a two-photon resonance produces asymmetric frequency
spectra together with self-frequency shift of the transmit-
ted pulse. Therefore, we must incorporate into the above
idealized model, the frequency dispersion of the real part
of the third order susceptibility. To this end we use the
wave equation derived in reference [13],

i
∂u

∂ξ
+

1

2

∂2u

∂τ2
+ |u|2u− iα|u|2

∂u

∂τ
= −iκ|u|2u , (19)

where α ∝ ∂Re(χ)3

∂ω
is the self-steepening parameter. The

Lagrangian corresponding to the conservative problem is
now given by:

LC =
i

2
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u
∂u∗

∂ξ
−u∗

∂u

∂ξ

)
+

1

2

∣∣∣∣∂u∂τ
∣∣∣∣2− 1

2
|u|4−

i

2
α|u|2u

∂u∗

∂τ
(20)

and the non-conservative process is still described by equa-
tion (12). We propose an ansatz capable to deal with the
self-steepening problem, that is,

u(ξ, τ) = ρ exp[−iφ(ξ, τ)] , (21)

ρ(ξ, τ) = A(ξ)sech

[
τ

ω(ξ)

]
, (22)

∂φ

∂τ
= a0 + a2ρ

2 , (23)

where a0 and a2 are constants. By proceeding as before,
we end up with a set of Euler-Lagrange equations, whose
solutions we may write as:

A(ξ) =

{
Γ (0) +

8

3
Kξ −

8η

5µ
ln

[
A2(ξ)

8
5ηA

2(ξ)− µ

]}− 1
2

,

(24)

ω(ξ) =
ω(0)

A(ξ)
√
µ− 8

5ηA
2(ξ)

, (25)

φ(ξ) = φ(0) +
a2

0

2
ξ −

µ

2

∫
A2(ξ)dξ −

8η
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∫
A4(ξ)dξ (26)

where

µ = 1 + a0(α− 2a2) , (27)

η = a2(α− a2) . (28)

where Γ (0) is a constant related to A(0). Notice that when
α − a2 = 0, we find a solitary wave solution , recovering
the same solution class obtained in the absence of self-
steepening and asymmetric self-phase modulation, which
is a completely new result concerning this problem [13].
Physically it can be understood that the initial chirp im-
posed on the pulse through the parameter a2 determines
that during propagation the pulse can balance the self-
steepening parameter α associated with the material. It
is also possible to show that there are combinations of
a2 and α that produces enhancement or attenuation of
theself-steepening.
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In conclusion we have established a new variational
formalism suited to deal with nonlinear dissipative
Schrödinger equations and showed the existence of soli-
tary wave solutions in TPA medium even when the pulse
wavelength was so near the band gap that self-steepening
played an important role. Our method has an advantage
over those found in the literature for non-conservative sys-
tems [4–6], because there is no need to know a priori the
decaying/growing functional form of the solution and also
we can easily deal with nonlinear loss or gain.

The resulting formalism may be generalized to deal
with propagation problems that involve higher dimensions
and quadratic nonlinear media [16] as well as other types
of non-conservative nonlinearities such as found in the
Ginzburg-Landau equation which describes pulse prop-
agation in Er3+-doped fibers. This work was partially
supported by the Brazilian agencies: FINEP, CNPq and
CAPES.
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